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S U M M A R Y  
The paper is concerned with the slow stationary flow ofa micropolar incompressible fluid past a sphere. Adopting the 
Stokesian approach of neglecting the inertial terms in the momentum equation and the bilinear terms in the balance 
of first stress moments, the equations are integrated and the flow parameters determined. The drag on the sphere is 
seen to be more in the present case than that in the case of non-polar fluids. It is found that in spite of the couple 
stress in the fluid, there is no resultant action by it on the sphere. Numerical work shows that the streamlines in the 
polar case have greater deflection towards the sphere than in the non-polar (or classical) case. 

1. Introduction 

The theory of micro-polar fluids introduced by A. C. Eringen [11 deals with a class of fluids 
which respond to certain microscopic effects arising from the presence of micro-structure and 
are influenced by the spin inertia.A simplified case of this theory has also been discussed recently 
by A. C. Eringen [2]. An interesting feature of this class of fluids is the sustainance of couple 
stresses. Some anisotropic fluids such as animal blood and liquid crystals made up of bar-like 
or dumb-bell shaped molecules seem to fall within the scope of this theory. Apart from the 
usual quantities p (mass density), q (fluid velocity vector) and tij (stress tensor), we have in the 
present theory the following additional quantities: micro-stress average (s~j) and the first 
stress moment 2~j,,. In the theory of micropolar fluids, the constitutive equation is linear, 
the micro-inertia moments have an isotropic distribution, the gyration tensor vii is antisym- 
metric and the first stress moment 2~jm is antisymmetric in the last two indices. Fluid particles 
contained in a small volume element have besides the usual rigid rotation, also rotation about 
the centroid of the volume element in an average sense, and the vector v defined by the anti- 
symmetric tensor v~j describes this rotation. There is no micro-stretch of the particles in this 
theory, since the tensor v~j is antisymmetric. The field equations are then presentable in terms 
of the fluid velocity vector q and the micro-rotation vector v. 

In this paper we examine the slow stationary flow of an incompressible micro-polar fluid 
past a sphere. As is usual with the classical investigations of the problem, as a first step the 
inertial terms of the momentum equation and the bilinear terms in the balance of first stress 
moments are neglected and the flow is obtained over the space outside the body under the 
above approximation. Explicit calculations are given for the velocity and micro-rotation and 
the stresses as well as couple stresses. The drag on the body is determined. It is seen that in the 
present theory the drag is more than in the classical case. We find that the body as a whole does 
not experience any couple. 

2. Basic Equations 

The field equations of the micro-polar fluid dynamics are [1] 

8p + div (.q)= 0 
& (1) 

Dq = (21 +2#+k)  grad div q - (#+k) curl curl q +k  curl v - g r a d  p+pf P~t- (2) 
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Dv 
PJ ~ = (~ + fl + 7) grad div v -  7 curl curl v 

+ k curl q - 2k v + pl (3) 

in which q, v, f, l are respectively the velocity, micro-rotation, body force and body couple 
vector. The constants p and j are the density and gyration parameter, while (21, #, k) and 
(e, fl, 7) are material constants, which are governed by certain inequalities. The stress tensor 

- e  2 pq are given by tij and the couple stress tensor mij = jpq 

t~j= ( - p + 2 1  div q)(~idq-(2#+k)dlj+ke, iym(O,)m-v m) (4) 
and 

m.  = (e div V)Sij'drflVi,j'q-~)Vj, i (5) 
where vi and 2~o~ are the components of the micro-rotation vector and vorticity vector respect- 
ively, dij denote the rate of strain components and comma denotes cov~triant differentiation. 

3. Slow Stationary Flow past a Sphere 

Let er, e0, eo be the unit base vectors of the spherical polar system r, 0, qS. The flow is past the 
sphere r = a and is a uniform stream at infinity. The flow of the fluid is in the meridian plane 
and all physical quantities are independent of q~. We choose the velocity vector in the form 

q = u (r, 0) er + v (r, 0) e0 (6) 

and in view of the incompressibility condition div q = 0, we have 

1 8~ v --1 8tP 
u(r, 0 ) -  r2s in0  90 ; v(r, 0 ) - - -  (7) r sin 0 Or 

where 7/is the stream function. Since the vorticity has its only component perpendicular to 
the meridian plane, we take the micro-rotation vector v in the form 

v = v(r, 0)e+. (8) 

It is then obvious that 

div v = 0.  (9) 

Under these conditions, the equations (2) and (3) can be put in the form 

- ( #  + k) curl curl q + k curl v - g r a d  p = 0,  (10) 

- 7  curl curl v + k  curl q - 2 k v  = 0. (11) 

From these we see that 

v = �89 curl q 7 (# + k) 2k 2 curl curl curl q (12) 

and pressure is to be determined from the equation 

7(~+k) 
grad p = - �89 (2# + k) curl curl q 2k curl curl curl curl q .  (13) 

The velocity vector satisfies the equation 

2 2 
curl curl curl curl curl q + ~ curl curl curl q. = 0,  (14) 

where 

2 2 _ k(Z#+k) (15) 
a 2 7(#+k) " 
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These equations can be rewritten in terms of the stream function ~. If 

0 2 1 632 cot 0 63 
E: - (16) 

- -  ~ r 2  q- r 2 630 2 r 2 630 

we see that 

E 4 E27 j - ~  = 0  (17) 

and 

v(r,O)- -1  E 27 j +  E 47-' (18) 
2rsin 0 

The solution of the problem consists in solving the equations (17) and (18) subject to the 
following conditions: 

(i) adherence of the fluid to the solid boundary, which means that in this problem we have 
u, v, v = 0 on r = a conforming to the conditions of non-slip and non-spin on the boundary. 

(ii) at infinity the flow approaches a uniform stream of speed U, parallel to the axis of 
symmetry. 

To have the uniform stream at infinity it is essential that 

gt~�89 2 sin 2 0 (19) 

for large values of r. We therefore seek the solution for ~ in the form 

=f(r )  sin 2 0. (20) 

The function f(r) is determined by 

2 2 2 "x 
~)f (r )  = 0 (21) 

and the solution of this is 

f (r)=Ar4+Br2+cr+D+x/r{El~ (2~ra)q-FK~(2-~f (22) 

involving six constants and the functions I~ (..) and K~ (...) denote the modified Bessel functions. 
For the flow to be regular at infinity and equal to the uniform stream as indicated in (10), 
we must discard the constants A and E in (22) and choose 

B = �89 (23) 

The remaining three constants in the solution C, D, F are determined by the adherence condi- 
tions, via, 

u(a, 0 )=0 ;  v(a, 0 )=0  and v(a, 0 ) = 0 .  (24) 

The velocity and the micro-rotation are then found to be 

u(r, 0 ) =  U + - - +  + - - K }  cos0 (25) 
r 7 g r =~ 

= - - - +  + - -  K~ + - - K ~  sin0 (26) 
r 75 r } a 

v(r,O)= 7 - F  k a 2 x/r K} sinO (27) 

where 
C = -  3aU(2+l)(#+k) (28) 

2 [2 (# + k) 2 + (Z# + k)] 
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a 3 U  # ( 2 + 1 ) + k  ,~+2 + X + 
D =  

2 [ 2 ( # + k ) 2 + ( 2 # + k ) ]  

3 Uka  ~ 
F ~ - -  

2,~ [2(# + k),~ + (2# + k)-]" 

The pressure is round'from the equation (13). We see that 

grad p = - (2# + k) ~3 [2 cos 0G + sin 0e0] 

and hence 
C 

p = (2#.+ k) 7~ cos 0~+ poo. 

(29) 

(30) 

(31) 

(32) 

4. Stress  Tensor  

The stress tensor t u is defined in (4). Taking the suffixes r, 0, ~b corresponding to indices 1, 2, 3 
we have the physical components of the strain velocity given by 

d.~ = - 2doo = - 2doo = - 2 + + F K5 cos 0 a - ~= (33) 

= " + --v K~ sin 0 
ar~ 

and 

dro = doo = 0 .  

Hence the stress tensor has the physical components 

t~ = - p - 2 ( 2 # + k )  + ~4- + F -  1 K5 cos 0 
a r ~ = \ a / J  

t o o = t o o = - P + ( 2 # + k )  + ~ - +  f - a - - r  ~K~ a cos0  

3D 2 1 K 5  { 2 r ) ~  
t~o = (2# + k) - r ~ - - F -  s i n 0  ( 

to~ = (2#+k) 3D F 2 K~ + - -  K~ sin 0 
r 4 r ~ a a 

t r O =  to t  = too = tOO = O .  

The stress vector on the surface r =  a is 

trr er -}- tr0 e0 q- tr 0 e0 , 

and it is found to be 

(34) 

(35) 

(36) 

(37) 

(3s) 

(39) 

(40) 

(41) 

( -  
- (2# + k) ~ (cos 0e r -  sin 0e0). (42) 

Thus we see that the stress vector is everywhere parallel to the axis of the symmetry. The drag 
on the sphere is now found to be 

6rca U (2 + 1)(# + k)(2# + k) 
2 ( # + k ) 2 + 2 # + k  (43) 
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We recover the expression for the drag in Stokes solution by taking the limit as k--*0 in (43). 
Let D~ denote the drag on the sphere in the micropolar liquid and let Do(= 6rcaU#) be the 

drag in the non-polar liquid. 
We have 

(1 +2)(#+k)(Z#+k) 
D~/D~ = {2 (# + k)2 + (2# + k)} #" (44) 

Since the parameters #, k, 2 are all > 0, we easily see that 

k 
1 + ~ < Dz/D o < 1 + k /# .  (45) 

Thus the drag on the sphere is greater in the micropolar liquid than in the ordinary non-polar 
liquid. 

5. Couple Stress 

The couple stress m~j is given by (5). In the present case the physical components of the tensor are 

mrr = moo = moo = taro = mo~ = 0,  (46) 

mr4= (fi+27) - ~ + F  k a 2 r ~ 

+ ? F  # + k 2 3  1 ( ~ ) ]  
k a3 x/r K~ sin 0 (47) 

rno,= (2/3+7). - ~ 5 + F  k a 2 r } 

+ f l F # + k 2 3  1 ( ~ ) 1  a3 x/r K_~ sin 0 (48) 

moo = - m o ~  - r ~z - F # 1 a2 x/r K~ cos 0. (49) 

The couple stress vector on the sphere r=  a is hence seen to be 

[mro](.=.)e O (50) 
and this reduces to 

3Vk(2#+k) 
sin 0e 0 . (51) 

- 2 [2(# + k)2 + (2# + k)] 

The resultant couple vector on the sphere is therefore 

f N0=o f 2~4=o [mr~176 (52) 

and this is seen to be zero. Thus we find that there is no resultant action by the couple stress on 
the body as a whole and it experiences only a drag even as in the case of non-polar viscous 
liquids. 

Figures 1 to 6 indicate the stream lines, micro-rotation, shear stress difference and couple 
stress components, for the values k / #  = 5, 2 = 1 and/3/7 = 0.5. It is seen that the stream lines in 
the polar case have greater deflection towards the sphere than in the non-polar (or classical) 
case. 
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. . . . .  N E W T O N I A t ~  F L U I D .  
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Fig. 1. Stream lines. 
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Fig. 2. Micro-rotation. 
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Fig. 3. Stress difference t,o-to,. 
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Fig. 4. Couple stress m~,. 

Journal of Engineerin9 Math., Vol. 4 (1970 i 209-217 



216 S. K.  Lakshmana Rao, P. Bhujanga Rao 

- t  ~11 
T" 

i i 

4- (5 G 

Fig. 5. Couple stress mot. 
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Fig. 6. Couple stress moo. 
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